Minkowski Eşitsizliği: $p\geq 1$ ve $(x_n),(y_n)\in \mathcal{l}^p$ olmak üzere
$$\left(\sum_{i=1}^{\infty}|x_i+y_i|^p\right)^{1/p}\leq \left(\sum_{i=1}^{\infty}|x_i|^p\right)^{1/p}+\left(\sum_{i=1}^{\infty}|y_i|^p\right)^{1/p}.$$
Not: $$\mathcal{l}^p:=\left\{(x_n)\in\mathbb{R}^{\mathbb{N}}\Big{|}\sum_{n=1}^{\infty}|x_n|^p<\infty\right\}$$