I. YOL: $(\Rightarrow):$
$$\begin{array}{rcl} x=y & \Rightarrow & (x,(-x)+(-y))=(y,(-x)+(-y)) \\ \\ &\Rightarrow & x+((-x)+(-y))=y+((-x)+(-y)) \\ \\ &\Rightarrow & (x+(-x))+(-y)=y+((-y)+(-x)) \\ \\ &\Rightarrow & 0+(-y)=(y+(-y))+(-x) \\ \\ &\Rightarrow & -y=0+(-x) \\ \\ &\Rightarrow & -y=-x.\end{array}$$
$(\Leftarrow):$ Gerek kısmın kanıtına benzer şekilde yapılır.
II. YOL: $(\Rightarrow):$ $x=y$ olsun.
$$\left.\begin{array}{rr} -x=(-1)\cdot x\\ \\ x=y\end{array}\right\}\Rightarrow -x=(-1)\cdot x=(-1)\cdot y=-y.$$
$(\Leftarrow):$ $-x=-y$ olsun.
$$\left.\begin{array}{rr} x=-(-x) \\ \\ -x=-y\end{array}\right\}\Rightarrow x=-(-x)=-(-y)=y.$$
SONUÇ: $$x\neq y\Leftrightarrow -x\neq -y$$