$ B(x,\epsilon_1)\cap B(y,\epsilon_2)\neq \emptyset , z \in B(x,\epsilon_1) $ olsun.
$ \epsilon_1 < \epsilon_2 $ olduğunu varsayalım.
$\left.\begin{array}{r}z \in B(x,\epsilon_1)\\ \\ (X,d) \text { ultrametrik uzay} \end{array}\right\}\Rightarrow B(x,\epsilon_1) = B(z,\epsilon_1) ... (1) $
$B(x,\epsilon_1)\cap B(y,\epsilon_2)\neq \emptyset \Rightarrow (\exists t \in X) ( t \in B(x,\epsilon_1)\cap B(y,\epsilon_2) ) \Rightarrow (t \in B(x, \epsilon_1) ( t \in B(y,\epsilon_2)) ...(2)$
$ (1) (2) \Rightarrow (t \in B(z,\epsilon_1) (t \in B(y, \epsilon_2)) \Rightarrow (d(z,t)< \epsilon_1) (d(t,y)< \epsilon_2)$
$\left.\begin{array}{r}\max \{d(z,t), d(t,y)\} <\max \{\epsilon_1,\epsilon_2\} = \epsilon_2 \\ \\ (X,d) \text{ ultrametrik uzay } \Rightarrow d(z,y) \leq \max \{ d(z,t) , d(t,y)\} \end{array}\right\}\Rightarrow$
$ \Rightarrow d(z,y) < \epsilon_2 $
$ \Rightarrow z \in B(y, \epsilon_2)$
$ B ( x, \epsilon_1) \subseteq B(y, \epsilon_2).$