Bu yanıtı yazmaya çalışırken diferansiyel denklemlerle ilgili daha önce önemsemediğim noktaları öğrenmeme sebep olduğunuz için teşekkür ederim, güzel ve düşündürücü bir soru. Ben de yanıtın @eloi'nin önerdiği gibi $\text{sgn}(x)$ fonksiyonu olduğuna ikna oldum ve şimdi sizi de ikna etmeye çalışacağım. Biraz uzunca bir yanıt olacak ve bazı sebepler sıraladıktan sonra tartışmaya çok açık bir yerde bırakacağım.
Lineer diferansiyel denklemler için çözümün varlık ve biricikliği
$y' + p(x)y = g(x)$ formundaki bir denklemin $y(x_0) = y_0$ başlangıç koşulu için çözümünü bir integrating factor yardımıyla aşağıdaki şekilde buluruz.
$$y(x) = \frac{1}{\mu(x)} \int^{x}_{x_0}\mu(s)g(s)ds + y_0 \quad \text{ve} \quad \mu(x) = \exp \int^x_{x_0}p(s)ds$$
Bu bizim refleks olarak değişikenleri taraf tarafa ayırıp integral alarak bulma taktiğimizin biraz genelleştirilmiş hali. Fakat bu çözümün varlığı, böyle yazdığımızda daha açık görülüyor ki, $p$ ve $g$ fonksiyonlarının integrallenebilirliğine bağlı. Eğer çözümü aradığımız bir $x_0 \in (\alpha, \beta)$ aralığında her iki fonksiyon sürekli ise, integralleri alırken bir sorunla karşılaşmadan $x \in (\alpha, \beta)$ için $y(x)$ çözümünü hesaplayabiliriz. Verilen başlangıç koşulunu sağlayan bu çözüm biricik çözümdür.
Bizim denklemin asıl haliyle nonlineer oluşunu bir kenara bırakırsak, tam kare haline getirip çözdüğümüz daha sade denklemi ele alalım: $(yx)' = 1$. Denklemi biraz önceki standart formda yazarsak $g = p = 1/x$ olduğundan, $x=0$ noktasında verilen bir başlangıç değeri için yukarıda verdiğimiz yöntemle bir çözüm bulmamız mümkün olmayacak. Hatta bir çözüm var mı, varsa bu o başlangıç koşulunu sağlayan biricik çözüm müdür, bu sorulara da bir cevap veremeyeceğiz.
Diferansiyel denklemler dersinde ismi çokça anılan ve daha genel bir sonuç olan Varlık ve Biriciklik Teoremi (veya bkz. Picard-Lindelöf teoremi) de benzer süreklilik şartları istediği için $x=0$ noktasında imdadımıza yetişemeyecekler. Peki hakikaten bu noktadan geçen alışıldık yöntemlerle bulamadığımız bir çözüm olabilir mi?
Tekil Çözümler
Çeşitli örneklerden gördüğüm kadarıyla bu sorunun yanıtı tekil çözümleri bulmakta saklı. İçlerinden güzel bir örneği şu: $y' = y^{1/3}$. Bu diferansiyel denklemin $y \rightarrow 0$ için bir sürekilik problemi var. Eğer alışıldık şekilde değişkenleri ayırarak çözmeye kalkarsak bulacağımız integral sabiti $c$'ye bağlı "genel" çözüm: $y_c(x) = (\frac{2}{3} x + c)^{3/2}$, başlangıç koşulu $y(0) = 0$ verilirse $c = 0$. Fakat $y_s(x) = 0$ fonksiyonu da aynı eşitliği sağlayan ve gözümüzden kaçmış bağımsız bir çözümdü. Hatta reel çizgi üzerinde herhangi $r$ noktası için,
$$y_s(x) = \left \{ \begin{aligned} &0, && 0 \leq x \leq r \\ & \Big( \frac{2}{3} (x - r) \Big) ^{3/2} && r < x \end{aligned} \right.$$
parçalı fonksiyonu da gayet geçerli bir çözüm! Çözümlerin var olduğu ancak biricik olmadığı bir durumla karşı karşıyayız.
Gözden kaçan tekil çözümü bulmak için $y_c(x)$ çözüm ailesinin her bir $c$ değeri için teğet geçtiği envelope fonksiyonunu bulmamız yeterli olacakmış (sebebini bilmiyor ve merak ediyorum). Eğer farklı $c$'ler için bulduğumuz fonksiyonu çizdirirsek bu envelope eden eğrinin $y = 0$ olduğunu göreceğiz.
Orijinal Soruya Dönelim
Bizim elimizdeki denklemin bir parametreye bağlı "genel" çözüm ailesi $y_C = \mp 1 + \frac{C}{x}$ ve $C > 0$ şeklinde. Olası bütün $C$ değerleri için çözümlerin teğet geçtiği eğriler ise $y = \mp 1$. Bu eğrilerin diferansiyel denklemi sağlayan yeni tekil çözümler olduğunu görebiliyoruz. Aynı şekilde
$$y_s(x) = \left \{ \begin{aligned} &1, && 0 \leq x \leq 2 \\ & -1 + \frac{2}{x} && 2 < x \end{aligned} \right.$$
parçalı çözümü de her noktasında denklemi sağlıyor.
Ve sonuçta tam olarak buna benzer şekilde parçalı bir çözüm olarak, $x=0$'da süreksiz olsa da diferansiyel denklemi sağlayan
$$\text{sgn}(x) = \left \{ \begin{aligned} &1, && x > 0 \\ &0, && x = 0\\ &-1, && x < 0 \end{aligned} \right.$$
fonksiyonu da bir çözüm sayılabilir kanaatindeyim. İlk bakışta süreksizliğin oluşturacağı bir sorun göremedim, kaldı ki genel çözüm olan $y_C(x)$ fonksiyonlarının tamamı da $x = 0$'da süreksizler.