Ya calisiyor soyledigim yontem ama neden ve nasil calisiyor anlamadim yeniden anlatiyim ne yaptigimi:
$n \in \mathbb{N}$ icin $2n = \lceil n \rceil + \lfloor n \rfloor $ ifadesi dogru.
$A_n = \frac{A_{n-1}+K}{3}$ serisinin $K/2$ yakinsadigini biliyoruz.
$ 2 \lim_{n\to\infty} A_n = K$ dogal sayi oldigi icin
$ 2K = \lceil K \rceil + \lfloor K \rfloor$ diyebilirim galiba
$l = \lceil A \rceil$ diyelim o zaman $l-1 = \lfloor A\rfloor $
yani
$l =\frac{K+1}{2}$
peki simdi sorum deneysel olarak sonuca esit olsa da bu yontemle buldugum sonuc. Bu sonuc neden dogru ? cunku hicbir $A_n$ icin $2A_n = \lceil A_n \rceil + \lfloor A_n \rfloor$ dogru degil.
Isin diger bir ilginc tarafi bu kardes serilerin $A_n$ in yakinsama hizindan daha hizli yakinsamasi en azindan deneysel olarak.
asagida sonuclarimi paylasiyorum
julia> f(n,k,t) = n == 0 ? t : ceil((f(n-1,k,t) + k)/3)
f (generic function with 2 methods)
julia> g(n,k,t) = n == 0 ? t : floor((g(n-1,k,t) + k)/3)
g (generic function with 1 method)
julia> h(n,k,t) = n == 0 ? t : 2*( h(n-1,k,t) + k) /3
h (generic function with 1 method)
julia> deneme(n,k,t)=f(n,k,t),g(n,k,t),h(n,k,t)
deneme (generic function with 2 methods)
julia> deneme.(0:30,503,1)
31-element Array{Tuple{Real,Real,Real},1}:
(1, 1, 1)
(168.0, 168.0, 336.0)
(224.0, 223.0, 559.3333333333334)
(243.0, 242.0, 708.2222222222223)
(249.0, 248.0, 807.4814814814814)
(251.0, 250.0, 873.6543209876542)
(252.0, 251.0, 917.7695473251027)
(252.0, 251.0, 947.1796982167352)
(252.0, 251.0, 966.7864654778235)
(252.0, 251.0, 979.8576436518824)
(252.0, 251.0, 988.5717624345883)
(252.0, 251.0, 994.3811749563923)
(252.0, 251.0, 998.254116637595)
(252.0, 251.0, 1000.8360777583966)
(252.0, 251.0, 1002.5573851722644)
(252.0, 251.0, 1003.7049234481761)
(252.0, 251.0, 1004.4699489654507)
(252.0, 251.0, 1004.9799659769673)
(252.0, 251.0, 1005.3199773179782)
(252.0, 251.0, 1005.5466515453187)
(252.0, 251.0, 1005.697767696879)
(252.0, 251.0, 1005.7985117979193)
(252.0, 251.0, 1005.8656745319462)
(252.0, 251.0, 1005.9104496879642)
(252.0, 251.0, 1005.940299791976)
(252.0, 251.0, 1005.9601998613174)
(252.0, 251.0, 1005.9734665742117)
(252.0, 251.0, 1005.9823110494744)
(252.0, 251.0, 1005.9882073663163)
(252.0, 251.0, 1005.9921382442108)
(252.0, 251.0, 1005.9947588294739)