Çözüm: $a=xn$, $b=xm$, $y=xmn$ olacak şekilde aralarında asal $m, n$ pozitif tam sayıları vardır.
Şakkadanak* $(m-1)(n-1) \geq 0$ olduğundan $mn +1 \geq m + n $ elde edilir. Her iki tarafı $x$ pozitif tam sayısı ile çarparsak
$$ mx + nx \leq mnx + x $$
olup
$$ a + b \leq x + y $$
elde edilir. Ayrıca eşitlik durumu $m=1$ veya $n=1$ iken geçerlidir.
*Şakkadanak Yazdığımız Eşitsizliğin Motivasyonu: Kanıtlamamız istenen $ a + b \leq x + y $ eşitsizliğine denk olan başka eşitsizlikler yazarak doğruluğunu bildiğimiz bir eşitsizliğe ulaşmayı deneyebiliriz:
$ a + b \leq x + y \iff mx + ny \leq mnx + x \iff m + n \leq mn + 1 \iff (m-1)(n-1) \geq 0$. Bu son eşitsizliğin doğru olması için gerek ve yeter şart ilk eşitsizliğin doğru olmasıdır. $m, n$ pozitif tam sayılar olduğundan $(m-1)(n-1) \geq 0$ eşitsizliği de açıkça doğrudur. Çift yönlü gerektirmeler ile ilerleme eşitlik/eşitsizlik ispatlarında kullanılan basit ve yaygın biçimde kullanılan bir fikirdir. Paylaşmış olalım.