Bir de projektif geometriyi kullanarak çözmeye çalışalım.
Projektif uzay
Sorudaki iki boyutlu düzlemi bir $\mathbb{R}^3$ uzayı içine yerleştirelim. Ayrıca bu uzayda orijinden çıkan tek bir ışın üzerinde yer alan bütün noktaları birbirine denk kabul edelim, bir başka deyişle bir $t \neq 0$ için $(x,y,z) \sim t(x,y,z)$ olsun. Bu kabulle ve orijin noktasını hariç tutarak elde ettiğimiz uzaya "projektif uzay" diyeceğiz ve $\mathbb{P}^2 $ olarak kısaltacağız.
Başlangıçtaki düzlemi $\mathbb{R}^3$ içine, örneğin $z=1$ düzlemine yerleştirebiliriz. Büyük uzayda artık düzlemdeki her bir $(x,y)$ noktası için tek bir ışın (denklik sınıfı) ve ışın üzerinde sonsuz sayıda $t(x,y,1)$ noktası olacaktır.
$\mathbb{R}^2$deki herhangi bir doğruyu $ax+by+c=0$ diye ifade ettiğimizi hatırlayalım. Bu denklemi yeni koordinat sisteminde $l = (a,b,c)$ ve $p=(x,y,1)$ iki vektör olmak üzere $\langle l, p \rangle = \sum_i l_i p^i = 0$ şeklinde yazabilirdik. Böylelikle $\mathbb{R}^2$deki her doğru için şimdi $\mathbb{R}^3$te orijinden geçen düzlemler elde ettik. Bu yazım şeklinin çok kullanışlı birkaç özelliği var:
(1) $\mathbb{R}^3$ içindeki genel lineer dönüşümler, veya kısaca $GL(3,\mathbb{R})$, altında değerinin değişmemesi, düzlemleri (doğru denklemlerini) başka düzlemlere (doğru denklemlerine) götürmesi.
(2) $\mathbb{R}^3$ içindeki bir ölçek değişimi altında ($p^i \xrightarrow{} tp^i$) doğru denklemini sağlayan bir $p$ noktası için $\langle l, tp \rangle = t\langle l, p \rangle = 0$ olması.
(3) Doğru denklemini sağlamayan bir $q$ noktası için $\langle l, q \rangle \neq 0 \implies \langle l, tq \rangle \neq 0$ ilişkisini koruması. Dolayısıyla $p$ hep doğru üzerinde kalırken $q$'nun hep dışında kalması.
Yani derdimiz bir soruda verilen noktaların arasındaki mesafe değil de, hangilerinin aynı doğru üzerinde yer aldığı sorusu ise, bunun yanıtını $\mathbb{R}^3$te (aslında $\mathbb{P}^2$de) aramayı deneyebiliriz.
Biraz tensör cebiri egzersizi
$\epsilon_{ijk}$ tam antisimetrik Levi-Civita tensörü olsun ve yeni bir işlem tanımlayalım: $\langle xyz \rangle = \epsilon_{ijk} x^i y^j z^k$. 3 boyutta bir $\Lambda$ lineer dönüşümü altında $\langle xyz \rangle \xrightarrow{} \text{det} \Lambda \langle xyz \rangle$ olduğunu gözlemleyin.
Şimdi biraz üzerinde oynayarak ikna olabileceğiniz iki iddia:
(i) $\mathbb{R}^2$de bir doğruya denk düşen 3 boyutlu bir $l$ vektörünü o doğru üzerindeki iki farklı nokta belirler: $l_i = \epsilon_{ijk}
x^j y^k$ çünkü $\langle l, x \rangle = \langle l, y \rangle = 0$.
(ii) $\mathbb{R}^2$de iki farklı doğrunun kesişim noktası: $x^i = \epsilon^{ijk} l_j m_k$ çünkü $\langle l, x \rangle = \langle m, x \rangle = 0$.
Demek ki sorumuz $\langle l_{(p_1 p_2)} , p_3 \rangle = \langle p_1 p_2 p_3 \rangle$ değerini hesaplamakla çözülebilir:
$$\langle p_1 p_2 p_3 \rangle = \langle B'AC' \rangle \langle AA'C \rangle \langle A'BC' \rangle \langle BB'C \rangle - \langle BA'C \rangle \langle A'AC' \rangle \langle AB'C \rangle \langle B'BC \rangle = 0$$ İlk eşitlikte $\epsilon_{ijk}$ tensorünün özelliklerini, son eşitlikte $ABC$ doğrusu üzerinde yer almayan herhangi bir $q$ noktası için $\langle qAB \rangle = \langle qAC \rangle = \langle qBC \rangle$ olduğunu kullandık*.
(*) Ek düzenleme: Sonuncu özellik ilk bakışta açıkça görünmüyor, çünkü aslında doğru eşitlik bir $k \neq 0$ için $\langle qAB \rangle = k \langle qAC \rangle$. Ama projektif uzayda $q$ noktasını temsil etmek için $q_i$ yerine $\frac{1}{k} q_i$ koordinatlarını da kullanabileceğimizden $k$'yı ortadan kaldırabiliriz.