Mathematica ile cozum.
$(x0,y0)$ elipsin merkezi, $a,b$ yaricaplar ve $t$ derece cinsinden dondurme acisi olsun.
f[x0_, y0_, a_, b_, t_] :=
ImplicitRegion[((x - x0) Cos[t Degree] + (y - y0) Sin[t Degree])^2/
a^2 + ((x - x0) Sin[t Degree] - (y - y0) Cos[t Degree])^2/b^2 ==
1, {x, y}];
cornerPoints = {{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}};
R1 = f[0, 0, 1, 1, 0];
R2 = Line[cornerPoints];
pts = Solve[{x, y} ∈ R1 && {x, y} ∈ R2, {x, y}]
Show[Graphics[{Red,
R2, {Blue, PointSize[Medium], Point[{x, y} /. pts]}},
Frame -> True], RegionPlot[R1, BoundaryStyle -> Green]]
{{x -> -1, y -> 0}, {x -> 0, y -> -1}, {x -> 0, y -> 1}, {x -> 1,
y -> 0}}
cornerPoints = {{-3, -4}, {3, -4}, {3, 4}, {-3, 4}, {-3, -4}};
R1 = f[0, 0, 3, 4, 0];
R2 = Line[cornerPoints];
pts = Solve[{x, y} ∈ R1 && {x, y} ∈ R2, {x, y}]
Show[Graphics[{Red,
R2, {Blue, PointSize[Medium], Point[{x, y} /. pts]}},
Frame -> True], RegionPlot[R1, BoundaryStyle -> Green]]
{{x -> -3, y -> 0}, {x -> 0, y -> -4}, {x -> 0, y -> 4}, {x -> 3,
y -> 0}}
cornerPoints = {{-3, -4}, {3, -4}, {3, 4}, {-3, 4}, {-3, -4}};
R1 = f[3, 6, 2, 4, 15];
R2 = Line[cornerPoints];
pts = Solve[{x, y} ∈ R1 && {x, y} ∈ R2, {x, y}]
Show[Graphics[{Red,
R2, {Blue, PointSize[Medium], Point[{x, y} /. pts]}},
Frame -> True], RegionPlot[R1, BoundaryStyle -> Green]]
$\left\{\left\{x\to 3,y\to -\frac{2}{73} \left(4 \sqrt{73 \left(10+3
\sqrt{3}\right)}-219\right)\right\},\left\{x\to \frac{1}{73} \left(279-18 \sqrt{3}-8 \sqrt{3 \left(74+7
\sqrt{3}\right)}\right),y\to 4\right\}\right\}$