$n,m$ birer pozitif tam sayı ve $m\geq n$ olsun. $m$ tane farklı nesnenin $ n $ farklı kutuya her kutuda en az bir nesne bulunacak şekilde dağılım sayını $f(m,n)$ ile gösterirsek.
$f(m,n)= n^m-C(m,1)(m-1)^n+C(m,2)(m-2)^n-C(m,3)(m-3)^n+...$ dir.
Burada $m=1+12=13, n=1+4=5$ olduğu için
$f(13,5)=5^{13}-C(13,1)(13-1)^5+C(13,2)(13-2)^5-C(13,3)(13-3)^5+...+C(13,12)(13-12)^5$
$=5^{13}-C(13,1)(12)^5+C(13,2)(11)^5-C(13,3)(10)^5+...+C(13,12) $ olur. Artık bu işlemleri siz yaparsını :)