Tanımlar (Elimden geldiğince terimleri türkçe yazmaya çalışırım ama durumun anlaşılmasını zorlaştırmamak için ingilizcelerini yazmak zorundayım):
Chain Kompleks:
$$\cdots\xrightarrow{d_{n+2}} C_{n+1}\xrightarrow{d_{n+1}} C_n\xrightarrow{d_{n}} C_{n-1}\xrightarrow{d_{n-1}}\cdots$$
$C_n$: Abelyen grup.
$d_n:C_n\to C_{n-1}$: grup homomorfizmaları
Öyleki $$d_{n}\circ d_{n+1}:C_{n+1}\to C_{n-1}\\ d_{n}\circ d_{n+1}=0$$
Kısaca chain kompleks $$C_{*}=\left\{C_n, d_n:C_n\to C_{n-1}\right\}_{n\in\mathbb Z}$$ $C_n$ diye adlandırılan abelyen gruplardan ve bunlar arasındaki homomorfizmalardan tanımlanıyor öyle ki $d_{n}\circ d_{n+1}=0$. Chain Kompleksi $C_{*}$ ile gösterelim.
Tam (Exact) Chain:
$$\cdots\xrightarrow{d_{n+2}} C_{n+1}\xrightarrow{d_{n+1}} C_n\xrightarrow{d_{n}} C_{n-1}\xrightarrow{d_{n-1}}\cdots$$
$C_{*}=\left\{C_n, d_n:C_n\to C_{n-1}\right\}_{n\in\mathbb Z}$ chain kompleks olsun. Bu chain exacttir ancak ve ancak $ker(d_n)=Im(d_{n+1})$ olursa. (Homology bilenler için)Yani tüm homology grupları 0 olursa $\left(\dfrac{ker(d_n)}{Im(d_{n+1})}=H_n(C)=0\right)$.
Chain Kompleksler arasındaki morfizma:
$C_{*}$ ve $D_{*}$ abelyen grupları ve aralarındaki $d_n^C:C_n\to C_{n-1}$ ve $d_n^D:D_n\to D_{n-1}$ grup homomorfizmaları ile verilsin.
$$f:C_{*}\to D_{*}$$ chain morfizması olsun.
$\require{AMScd}$ \begin{CD} \cdots @>d^C_{n+2}>>C_{n+1} @>d^C_{n+1}>> C_n @>d^C_n>> C_{n-1} @>d^C_{n-1}>> C_{n-2} \cdots \\ \cdots@V f_{n+1} VV \circlearrowleft @VV f_n V \circlearrowleft @VV f_{n-1} V \circlearrowleft@VV \cdots V \\ \cdots @>d^D_{n+2}>>D_{n+1} @>d^D_{n+1}>> D_n @>d^D_n>> D_{n-1} @>d^D_{n-1}>> D_{n-2} \cdots \end{CD}
Öyle ki her kare "commutes" yani her iki yoldan gelinen fonksiyon eşittir, yani $$d_n^D\circ f_n=f_{n-1}\circ d_n^C$$
Chain Homotopi:
$C_{*}$ ve $D_{*}$ chain kompleks olsun ve $$f,g:C_{*}\to D_{*} $$
Chain morfizmaları olsun. $f\simeq g$ yani $f$, $g$'ye homotopik denir ancak ve ancak her $n$ için $h_n: C_n\to D_{n+1}$ grup homomorfizması var ki $$g_n-f_n=d_{n+1}^D\circ h_n + h_{n-1}\circ d_n^C$$ sağlansın.
$\require{AMScd}$ \begin{CD} \cdots @>d^C_{n+2}>>C_{n+1} @>d^C_{n+1}>> C_n @>d^C_n>> C_{n-1} @>d^C_{n-1}>> C_{n-2} \cdots \\ \cdots@V f_{n+1} V g_{n+1}V \swarrow_{h_{n}} @V f_n V g_n V \swarrow_{h_{n-1}} @V f_{n-1} V g_{n-1 }V\swarrow_{h_{n-2}}@VV \cdots V \\ \cdots @>d^D_{n+2}>>D_{n+1} @>d^D_{n+1}>> D_n @>d^D_n>> D_{n-1} @>d^D_{n-1}>> D_{n-2} \cdots \end{CD}
Sorum:
$C_{*}$ ve $D_{*}$ chain kompleks olsun.
$C_{*}$ 'nin grupları $C_n$'ler free abelyen gruplar olsun ve $D_{*}$ exact(tam) chain kompleks olsun (yani $H_n(D)=0,\quad \forall n\in\mathbb Z$)
Gösteriniz: Verilen her chain morfizması $f:C_{*}\to D_{*}$, $0$ morfizmasına homotopik olur.
$\require{AMScd}$ \begin{CD} \cdots @>d^C_{n+2}>>C_{n+1} @>d^C_{n+1}>> C_n @>d^C_n>> C_{n-1} @>d^C_{n-1}>> C_{n-2} \cdots \\ \cdots@V f_{n+1} V 0V \swarrow_{h_{n}} @V f_n V 0 V \swarrow_{h_{n-1}} @V f_{n-1} V 0V\swarrow_{h_{n-2}}@VV \cdots V \\ \cdots @>d^D_{n+2}>>D_{n+1} @>d^D_{n+1}>> D_n @>d^D_n>> D_{n-1} @>d^D_{n-1}>> D_{n-2} \cdots \end{CD}
Öyle grup homomorfizmaları $h_n: C_n\to D_{n+1} $ bulmalıyım ki $f_n=d_{n+1}^D\circ h_n + h_{n-1}\circ d_n^C$ sağlansın. Yani $h_n$'ler $f_n$ lere bağlı olmak zorunda ve indüksiyonel bir şekilde ilerlemem gibi hissediyorum yalnız $h_n$'leri inşaa etmek için diagramdaki okların yönü zorluk çıkarıyor dolayısıyla $C_{*}$ veya $D_{*}$ 'deki grup morfizmalarının bir şekilde invertible oldugunu söylemem gerekiyor. $C_{*}$ free abelyen oldugu için atomik chainlere ayrıldıgını bılıyorum ama bana bir kolaylık saglamıyor.