Bu tür problemler ile ilgili yapılmış bazı çalışmalardan bahsedeceğim. Sorulan probleme yakın türde bir soruya yanıt olacaktır. (Eğer yeterli görülürse, yorumdan cevaba taşıyabilirim.)
Her $x,y$ gerçel sayısı için
$$ f(x+y) = f(x) + f(y) \qquad \dots (1)$$
denklemine temel Cauchy fonksiyonel denklemi denir. Bu denklemin $f(x) = cx$ biçimindeki çözümlerden başka çözümlerinin olup olmadığı uzun süre merak edilmiştir. Eğef $f$ fonksiyonuna süreklilik şartı eklenirse tüm çözümlerin $f(x)=cx$ olduğu gösterilmiştir. Darboux, $(1)$ denklemini sağlayan bir fonksiyonun belli bir $x_0$ noktasında sürekli olduğu bilgisi verilirse, o fonksiyonun tüm gerçel sayılarda sürekli olacağını kanıtlamıştır. Yine $f$'nin bir aralıkta sınırlı olduğu bilgisi verilirse veya $f$'nin tanım kümesi pozitif (veya negatif olmayan) gerçel sayılar verilirse bu tür durumlarda da $(1)$ denkleminin çözümlerinin $f(x)=cx$ olduğu gösterilmiştir. Nihayet, 1905'te G. Hamel'in çalışmalarıyla $(1)$ denkleminin $f(x)=cx$ formunda olmayan çözümlerinin olduğu kanıtlanmıştır. Dolayısıyla bu çözümler hiçbir noktada sürekli değildir.
Cauchy'nin diğer denklemleri her $x,y$ gerçel sayısı için sağlanan
$$ f(x+y) = f(x)f(y) \qquad \dots (2)$$
$$ f(xy) = f(x) + f(y) \qquad \dots (3)$$
$$ f(xy) = f(x)f(y) \qquad \dots (4)$$
denklemleridir. Ana problemle ilgili olması bakımından bunlardan $(3)$ denklemi ile ilgilenelim.
$(3)$ denkleminde tanım kümesi pozitif gerçel sayılar olarak verilmiş olsun. Yani $x, y >0$ olsun. $x=e^u$, $y=e^r$ değişken değiştirmesi yapılırsa $f(e^{u+r}) = f(e^u) + f(e^r)$ elde edilir. Burada $f(e^u) = g(u)$ değişken değiştirmesi yapılırsa denklem $g(u+r) = g(u) + g(r)$ temel Cauchy fonksiyonel denklemine indirgenmiş olur. Bu denklemin $g(u)=cu$ biçiminde sürekli çözümleri olduğu gibi G.Hamel'in çalışmalarından dolayı hiçbir yerde sürekli olmayan $g_0(u)$ çözümleri olduğunu da biliyoruz. Böylece $(3)$ ün pozitif $x,y$ gerçel sayıları için tüm çözümleri
$$ f(x) = c\ln(x) , f(x) = g_0(\ln(x))$$
biçiminde olur diye düşünüyorum. Öte taraftan j. Aczel'in (1966) Lectures on Functional Equations and Their Applications isimli kitabında (sayfa 39) $f(x) = g_0(\ln(x))$ türü çözümlerin oluştuğundan hiç bahsedilmeden pozitif $x,y$ değerleri şartı altında en genel çözümlerin $ f(x) = c\ln(x)$ türünde çözümler olduğunu ifade etmiş. Belki pozitif tanımlılık şartı altında temel Cauchy fonksiyonel denkleminin çözümlerinin doğrusal fonksiyonlar olduğu bilgisiye böyle birşey ifade edilmiş olabilir diye düşündüm, ancak $g(u+r) = g(u) + g(r)$ denkleminde $u,v$ değişkenlerinde pozitif olma koşulu yoktur. Bu sebeple süreksiz çözümler de olmalıdır dedim. Hata yapıyor olabilirim, henüz göremedim.
Şimdi $(3)$ denkleminde $y=x$ koyarak $f(x^2) = 2f(x)$ elde ederiz ve bu şekilde devam ederek $(3)$ denkleminden $f(x^5) = 5f(x)$ fonksiyonel denklemini türetebiliriz. Ana problemdeki denklemin pozitif gerçel sayılardaki çözümleri, $ f(x) = c\ln(x)$ ve $f(x) = g_0(\ln(x))$ çözüm ailelerinin bir alt kümesi olabilir. Kontrol edersek bu iki çözüm ailesi de ana denklemi sağlar. Böylece pozitif tanımlılık şartı altında $f(x^5)=5f(x)$ ana denkleminin $f(x) = c\ln(x)$ dışında (süreksiz olan) çözümleri olduğunu da anlamış oluyoruz.
Not: Ana soruda tanım kümesi gerçel sayılar olduğu için ilk yorumlarda bahsettiğimiz biçimde çözümler vardır. Tanım kümesini kısıtlamazsak burada hiç değinmediğimiz türde çözümler de olabilir belki.