$a=b$ olsa elbette çok kolay bir soru olurdu. Lineer (bir $c$ sabiti için $f(x)=cx$) şeklindeki fonksiyonlar (ama sadece onlar DEĞİL) istenen koşulları sağlardı.
$a\neq b$ ve $b\neq1$ için şöyle bir çözüm bulabiliriz:
$r=\log_ba$ olsun.
Koşulumuzu, $(f(ax))^r=b^r(f(x))^r=a(f(x))^r$ şeklinde yazarsak (bir $c\geq0$ sabiti için) $(f(x))^r=cx$ eşdeğer olarak, $f(x)=c^{\frac1r}x^{\frac1r}=Cx^{\frac1r}$) fonksiyonlarının bu koşulu sağladığı ve her $x>0 $ için türevlendiği görülür.
($r$ uygun ise $c<0$ da olabilir)
Fakat bunların dışında, istenen koşulları sağlayan başka fonksiyonlar da var.
Örneğin.
$1\leq x\leq a$ aralığında ($a<1$ ise $a\leq x\leq1$ aralığında) türevlenebilen, $g(a)=bg(1)$ olan ve $1$ ve $a$ da (tek taraflı) türevi $0$ olan bir $g$ fonksiyonu alalım. (örneğin $g(x)=(x-1)^2(a-x)^2$ böyle bir fonksiyondur, başka pek çok fonksiyon bulunabilir)
Her $x>0$ için, $ a^k\leq x<a^{k+1}$ olacak şekilde tek bir $k\in\mathbb{Z}$ vardır. $f(x)=b^kg(a^{-k}x)$ olarak tanımladığımızda,
Her $x>0$ için $f(ax)=bf(x)$ sağlandığı kolayca gösterilir. $g(a)=bg(1)$ oluşundan $f$ süreklidir.
$x\neq a^k\ (k\in\mathbb{Z})$ için türevlenebildiği de kolaydır.
Son olarak, $x=a^k\ (k\in\mathbb{Z})$ olduğunda sağdan ve soldan türevlerinin var (ve $0$ a eşit) olduğunu göstermek de zor değil.
Soru: Başka böyle $f$ var mıdır?
Soru: (ilk çözümdekiler dışında) $C^{\infty}$ sınıfından (sonsuz kez türevlenebilen) böyle bir $f$ bulunabilir mi?