Eşitsizlik konusu üzerine ciddi çalışmalar mevcut olmakla birlikte herhangi bir sorusu için doğrudan şu yaklaşım en uygun yöntemdir demek çok kolay değildir. Dolayısıyla her analiz kendine özgü bir başlangıcı ve ilerleme stratejisini gerektirir. Bu soruda $S$'nin karesini almak doğrudan bizi çözüme ulaştırmaz lakin kare işleminden sonra elde edilen terimler doğru alt gruplara ayrılıp analiz edilirse çözüme ulaştırır. Öncelikle $S=\frac{ab}{c}+\frac{ac}{b}+\frac{bc}{a}$ ifadesinin karesini alalım.
$$S^2=\left(\frac{ab}{c}+\frac{ac}{b}+\frac{bc}{a} \right)^2 = \underbrace{\frac{a^2 b^2}{c^2}+\frac{a^2 c^2 }{b^2}+\frac{b^2 c^2 }{a^2}}_{G_1}+\underbrace{2(a^2 +b^2+c^2)}_{G_2}$$
$S^2$ ifadesini $G_1$ ve $G_2$ alt toplamları altında inceleyelim. $G_1$ ifadesi üç terimden oluşmaktadır. Bu üç terimi sıradan bağımsız olarak ikişerli analiz edeceğim. O halde, $\binom{3}{2} =3$ farklı çift için aritmetik ve geometrik ortalama eşitsizliklerini yazalım.
$$\frac{a^2 b^2}{c^2}+\frac{a^2 c^2 }{b^2} \geq 2 \sqrt{\frac{a^2 b^2}{c^2} \times \frac{a^2 c^2 }{b^2}} =2a^2 \qquad \textsf{(1)}$$
$$\frac{a^2 b^2}{c^2}+ \frac{b^2 c^2 }{a^2} \geq 2 \sqrt{\frac{a^2 b^2}{c^2} \times \frac{b^2 c^2 }{a^2}} =2b^2 \qquad \textsf{(2)}$$
$$\frac{a^2 c^2 }{b^2}+\frac{b^2 c^2 }{a^2} \geq 2 \sqrt{\frac{a^2 c^2 }{b^2} \times \frac{b^2 c^2 }{a^2}} =2c^2 \qquad \textsf{(3)}$$
Bu üç eşitsizliği taraf tarafa toplarsak,
$$2\left( \frac{a^2 b^2}{c^2}+\frac{a^2 c^2 }{b^2} + \frac{b^2 c^2 }{a^2} \right) \geq 2(a^2 +b^2 +c^2)$$
$$\left( \frac{a^2 b^2}{c^2}+\frac{a^2 c^2 }{b^2} + \frac{b^2 c^2 }{a^2} \right) \geq (a^2 +b^2 +c^2) \qquad \textsf{(4)}$$
eşitsizliğini elde ederiz. Buradan hareketle dördüncü eşitsizliğin sol tarafında $S^2$ ifadesini oluşturmak için eşitsizliğin her tarafına $G_2$ alt toplamını ekleyelim.
$$ \frac{a^2 b^2}{c^2}+\frac{a^2 c^2 }{b^2} + \frac{b^2 c^2 }{a^2} +\underbrace{2(a^2 +b^2+c^2)}_{G_2} \geq (a^2 +b^2 +c^2) + \underbrace{2(a^2 +b^2+c^2)}_{G_2}$$
Eşitsizliği yeniden düzenlersek,
$$S^2 \geq 3(a^2 +b^2 +c^2)$$
elde ederiz. Sorunun en başında bize verilmiş olan $a^2 +b^2+c^2 =1$ denkliğini de kullanarak,
$$S^2 \geq 3$$
olduğuna ulaşırız. $a,b,c >0$ olduğu için $S$'de pozitif bir reel sayıdır. Sonuç olarak,
$$S\geq \sqrt{3}$$
olur. $S$'nin en küçük değeri $\sqrt{3}\approx 1.73$ olarak bulunur.