Her $x\in \mathbb{R} $ ve verilen rasyonel ifadenin ekstremum(minumum) değeri $a\in \mathbb{R}$ olsun. Bu durumda
$$\frac{x^2-x+4} {(x-2)^2}\ge a $$ eşitsizliği sağlanır. Düzenlersek $$(1-a)x^2+(4a-1)x+4-4a\le 0$$ eşitsizliğinin sağlanması için $\Delta \le 0$ olmalı. Buradan $$(4a-1)^2-16(1-a)^2\le 0$$ $$8a-5\le 0$$ $$a\le \frac{5} {8} $$ $$a=\frac{5}{8}$$ olmalıdır.