$f$ fonksiyonunun tanım kümesi $(-2,4)$ olsun.
(-) Bu foksiyon bu tanım kümesindeki her değer için tanımlı olduğu gibi
bu kümenin dışındaki hiçbir yerde de tanımlı değildir.
(-) Örneğin $f(x)=x^2+x+1$ gibi bir polinom olup
istense tüm gerçel ya da karmaşık sayılarda tanımlı yapılabilse de
$f$ fonksiyonu $5$ noktasında tanımlanmamıştır.
Yeni bir fonksiyon oluşturmayı, iki fonksiyon ile,
toplama, çarpma, bölme, bileşke gibi işlemler ile,
tek bir fonsiyon ile,
öteleme, genişleme/daraltma ile yapılabilir.
(-) Buradaki genel mantık
en geniş tanım kümesi ile
bu foksiyonları tanımlamaktır.
$f(2x)$ ile ifade edilen aslında yepyeni bir fonksiyon.
$g(x)=f(2x)$ gibi.
Soru şu: her $x\in (-1,2)$ değerleri için
$g(x)$ değeri var mıdır? ve
$x=5/2$ gibi bu aralığın dışındaki değerler için $g$, $f$ yolu ile tanımlanmış mıdır?
_______________________
Şöyle son bir ek yapayım:
$g:\begin{cases}(-1,2) &\to \quad \mathbb R \\ x &\mapsto \quad f(2x)\end{cases}$