$ \forall n\in\mathbb{N}^+ $ için $ \frac12<x_n\leq1 $ olduğunu göstermek zor değil.
Denklemi düzenleyerek, eşitliği, $ x\neq1 $ için $ x^{n+1}=2x-1 $ şeklinde yazabiliriz.
Önce, Matematiksel Tümevarım ile, $ \forall n\in\mathbb{N}^+ $ için, $x_n\leq\frac12+\frac1{n+1} $ olduğunu göstereceğiz.
$ n=1,2 $ için, $x_n\leq\frac12+\frac1{n+1} $ olduğu kolayca görülüyor.
Bir $n\geq2$ için $x_n\leq\frac12+\frac1{n+1} $ olsun.
Bu, ($ \frac12+\frac1{n+1}<1 $ oluşunu da kullanarak) $ \left(\frac12+\frac1{n+1} \right)^{n+1}\leq2\left(\frac12+\frac1{n+2} \right)-1=\frac2{n+1} $ olması demektir.
\begin{align*}
\left(\frac12+\frac1{n+2} \right)^{n+2}&=\left(\frac12+\frac1{n+2} \right)^{n+1}\left(\frac12+\frac1{n+2} \right)\\
&<\left(\frac12+\frac1{n+1} \right)^{n+1}\left(\frac12+\frac1{n+2} \right)\\&\leq\frac2{n+1}\left(\frac12+\frac1{n+2} \right) =\frac1{n+1}+\frac2{(n+1)(n+2)}
\end{align*}
elde ederiz.
$n\geq2$ için, $\frac2{n+2}-\left(\frac1{n+1}+\frac2{(n+1)(n+2)} \right) = \frac{n-2}{(n+1)(n+2)}\geq0$ olduğundan,
$ \left(\frac12+\frac1{n+2} \right)^{n+2}<2\left(\frac12+\frac1{n+2} \right)-1 $ olması demektir.
$ \left( \frac1{2}\right) ^{n+2}>2\times\frac1{2}-1 $ ve ($ x^{n+2} $ ve $ 2x-1 $ sürekli olduğundan, Ara Değer Teoremi kullanılarak)
$\frac12<x_{n+1}\leq \frac12+\frac1{n+2} $ olduğu elde edilir.
Daha sonra da, $ \lim\limits_{n\to\infty} \frac12= \lim\limits_{n\to\infty} \left(\frac12+\frac1{n+1} \right)=\frac12$ oluşundan, Sıkıştırma Teoremi kullanarak, $ \lim\limits_{n\to\infty} x_n=\frac12$ elde edilir.