$D$ noktasından $[AB]$ kenarına çizilen paralelin $[BC]$ kenarını kestiği nokta $E$ olsun.$[DE]$ orta taban olacak ve $|DE|=5$ birim, $[BE]=6$ birim olacaktır. $BDE$ üçgeninde kosinüs teoreminden:
$$|BD|^2=36+25-60.Cos(180-m(ABC))= 61+60.Cos(m(ABC))$$ ve
$$|BD|= \sqrt{ 61+60.Cos(m(ABC))}$$ karekökün içinin tam kare olduğu durumlarda $|BD|$ tam sayı olacaktır. Tabii bu da $-1\leq Cos(m(ABC))\leq1$ aralığında değişen $Cos(m(ABC))$ değirine bağlıdır. Örneğin $Cos(m(ABC))=1/3,13/20,1,...$ değerlerinde $|BD|$ tamsayıdır. Bunlar kaç tane?