$L:=[(L,\oplus),\odot,(\mathbb{F},+,\cdot),\|\cdot\|]$ normlu lineer uzay, $(L,d)$ metrik uzay ve $\theta, \ \oplus$ işleminin birim elemanı olsun. Eğer $d$ metriği
$1)$ $(\forall x,y,z\in L)(d(x\oplus z,y\oplus z)=d(x,y))$
$2)$ $(\forall x,y\in L)(\forall \lambda\in\mathbb{F})(d(\lambda\odot x,\lambda \odot y)=|\lambda|\cdot d(x,y))$
koşullarını sağlarsa $$||x||:=d(x,\theta)$$ kuralı ile verilen $$||\cdot||:L\to \mathbb{R}$$ fonksiyonu norm olma koşullarını sağlar (Kanıtı zor değil). Dolayısıyla $d$ metriği bir normdan elde edilebilir ve bu metrik $$d:L^2\to \mathbb{R}, \ d(x,y):=||x-y||$$ ile verilir.
Bu bilgiler ışığı altında $x=(0,1),$ $y=(0,2)$ ve $z=(0,3)$ alınırsa
$$\begin{array}{rcl} d(x+z,y+z) & = & d((0,1)+(0,3),(0,2)+(0,3)) \\ \\ & = & d((0,4),(0,5)) \\ \\ & = & d((0,-1)) \\ \\ & = & 1 \\ \\ & \neq & 1+2 \\ \\ & = & d((0,1),(0,2)) \\ \\ & = & d(x,y) \end{array}$$ olduğundan $d$ metriğinden bir norm elde edilemez.