$I(a)=\int_0^{\infty}\frac{\sin^2ax}{x^2\cdot e^{4x}}dx$ diyelim.
$$\begin{array}{rcl} I(a)=\int_0^{\infty}\frac{\sin^2ax}{x^2\cdot e^{4x}}dx & \Rightarrow & \frac{dI}{da}=I'(a)=\int_0^{\infty}\frac{2x\cdot \sin ax\cdot\cos ax}{x^2\cdot e^{4x}}dx \\ \\ & \Rightarrow & I'(a)=\int_0^{\infty}\frac{2\cdot \sin ax\cdot\cos ax}{x\cdot e^{4x}}dx \\ \\ & \Rightarrow & I'(a)=\int_0^{\infty}\frac{\sin 2ax}{x\cdot e^{4x}}dx \\ \\ & \Rightarrow & \frac{d}{da}\left(\frac{dI}{da}\right)=I''(a)=\int_0^{\infty}\frac{2x\cos 2ax}{x\cdot e^{4x}}dx \\ \\ & \Rightarrow & I''(a)=2\int_0^{\infty}\frac{\cos 2ax}{e^{4x}}dx \\ \\ & \Rightarrow & I''(a)=\frac{2}{a^2+4} \\ \\ & \Rightarrow & I'(a)-I'(0)=\int_0^a\frac{2}{x^2+4}dx \\ \\ & \Rightarrow & I'(a)=\arctan\left(\frac{a}{2}\right) \\ \\ & \Rightarrow & I(2)-I(0)=\int_{0}^{2}\arctan\left(\frac{x}{2}\right)dx \\ \\ & \Rightarrow & I(2)=\left[-\ln (x^2+4)+x\arctan(\frac{x}{2})+\ln 4\right]_0^2 \\ \\ & \Rightarrow & I(2)=\frac{\pi}{2}-\ln2. \end{array}$$