$c^2 = (a+k)^2 -n^2$ eşitliğini, ilk ispatta iç açıortayın uzunluk formülünden elde ettiğinizi görüyorum. Bu kullanılabilir ama Özgür hocamın belirttiği gibi, iç açıortay uzunluk formülünü nasıl ispatladığınız da önemlidir. İç açıortay uzunluk teoreminin ispatını yapıp, Pisagor teoremini kullanmadığınızı göstermelisiniz. Onu ispatlarken de başka bir yardımcı teorem kullanacak olursanız, Öklid, Stewart veya kosinüs teoremi gibi, bunların da ispatları Pisagor teoreminden yapıldığı için Öklid, Stewart veya kosinüs teoremini de kullanamazsınız. Öklid bağıntılarını Pisagor teoremi kullanmaksızın ispatlamak mümkündür. Bunu yapabiliyorsanız, Pisagor ispatınızda Öklid bağıntılarını kullanma hakkınız olur. Aksi halde Öklid'i de kullanamazsınız. İlk ispatınız olmamış demiyorum ama ispatınız olmuş demek için de erken.
İkinci ispatta, $c^2 = (a+k)^2 -n^2$ diye başlayan eşitliğiniz zaten Pisagor teoremidir. Bunu kullanarak tekrar Pisagor teoremini diğer küçük dik üçgende ispatlamış oluyorsunuz. İspatın takip edilebilir olması için köşelere harf verilmesi gerekir. $c^2 = (a+k)^2 -n^2$ eşitliğini, ilk ispatta iç açıortayın uzunluk formülünden elde ettiğinizi görüyorum. İkinci ispat, birinci ispatınızın tekrarı olmuş oluyor.
Benim derslerde kullandığım yöntemi açıklayan bir resim gönderiyorum. Önce Öklid'in çeşitli bağıntılarını alan ve benzerlik kavramları ile ispatlıyorum. Sonra Pisagor teoremini, Öklid'i kullanarak veya Öklid kullanmadan alan bağıntılarından iki yolla ispatlıyorum. Sonra kosinüs teoremini Pisagor teoremini kullanarak ispatlıyorum. Sonra Stewart teoremini, iki kosinüs teoremi veya üç kez Pisagor teoremi kullanarak iki yoldan ispatlıyorum...vs
Buradaki zincir, önce gelen teoremler sonraki teoremlerden faydalanılmadan ispatlanmak zorundadır. Sonra gelen teoremler ise, önce gelen teoremlerden faydalanılarak veya hiç faydalanılmadan da ispatlanabilir.