$\mathcal{A}\subseteq\tau$ ve $\mathbb{R}=\bigcup\mathcal{A}$ yani $\mathcal{A}$ ailesi, $\mathbb{R}$ gerçel sayılar kümesinin bir $\tau$-açık örtüsü olsun. $(\emptyset\notin \mathcal{A}$ olduğunu varsayabiliriz. Neden?)
$A\in \mathcal{A}\subseteq\tau\Rightarrow |\setminus A|\leq\aleph_0\Rightarrow (\exists I\subseteq \mathbb{R})(|I|\leq\aleph_0)(\setminus A=I)$
$\left.\begin{array}{rr}\Rightarrow (\exists I\subseteq \mathbb{R})(|I|\leq\aleph_0) (\mathbb{R}=A\cup (\setminus A)=A\cup I) \\ \\ \mathbb{R}=\bigcup\mathcal{A}\end{array}\right\}\Rightarrow$
$\left.\begin{array}{rr}\Rightarrow (\exists \{B_i:i\in\mathbb{N}\}\subseteq \mathcal{A})(\forall i\in\mathbb{N})(x_i\in B_i) \\ \\ \mathcal{A}^*:=\{A\}\cup \{B_i:i\in\mathbb{N}\}\end{array}\right\}\Rightarrow$
$\Rightarrow (\mathcal{A}^*\subseteq\mathcal{A})(|\mathcal{A}^*|=\aleph_0\leq\aleph_0)(\mathbb{R}=\bigcup\mathcal{A}).$