@Paluruta,
Bence, bu (senin de belirttiğin gibi), limite yeni bir tanım değil de, başka bir şey tanımlamak düşünebilir
(Her ne kadar analize yeni başlayanlara biraz karmaşık gelse de, limit için yeni bir tanım pek olası/gerekli görünmüyor bana. Çünki bu şeklini, metrik/topolojik uzaylara kolayca genelleştirebiliyoruz).
Bir de, bu şekli ile, sadece bir noktadaki ($c+(-1)^s\omega$ deki) değeri göz önüne alıyor, o da pek yararlı görünmedi bana. (Oradaki $\omega+|\cdots|$ daki $\omega$ niye var anlamadım.)
EK: Topolojik uzaylarda, sürekliliğin bir çok değişik tanımı var.
Örneğin:
Limit, o fonksiyonun ($f$), o sayı ($c$) yakınındaki değerlerinin tümü hakkında (kaba da olsa) bir fikir verir.
Türev, fonksiyonun değişim hızı hakkında bilgi verir.
Yeni tanımın (limitten farklı bir şey olacaksa) amacının ne olduğu hakkında biraz düşünebilirsin.
O kavram neyi ölçecek/hakkında fikir verecek?