Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
242 kez görüntülendi
$\beta=\{(x,y) |x = |y| , x,y \in [0,\infty)\}$

$y$ $\ge $ $0$ $\Rightarrow$ $x=y$

$1)$ $(\forall x\in [0,\infty))((\exists y\in [0,\infty))((x,y)\in f)$ önermesi doğru mudur?

Her $x \in [0,\infty) $ için $y:=x \in [0,\infty)$ seçilirse $(x,y)\in f$ koşulu sağlanır.

Dolayısıyla $$(\forall x\in [0,\infty))((\exists y\in [0,\infty))((x,y)\in f)$$ önermesi doğrudur.
 

$2)$ Şimdi $x\in [0,\infty), \  y,z \in[0,\infty), (x,y) \in f$  ve  $(x,z)\in f $ olsun.

Amacımız $y=z$ olduğunu göstermek.

$(x,y) \in f$ $\Rightarrow$ $x=|y|=y$

$(x,z)\in f $ $\Rightarrow$ $x=|z|=z$ dir. Buradan $y=z$ olduğundan ikinci önerme de doğrudur.

Dolayısıyla $f$ bağıntısı $[0,\infty)$ kümesinden $[0,\infty)$ kümesine bir fonksiyondur.
Lisans Matematik kategorisinde (22 puan) tarafından  | 242 kez görüntülendi
Bağıntıda $x$ ve $y$ pozitif seçiliyorsa  mutlak değer kullanılmasının ne anlamı var?
@alpercay buyuk ihtimalle bu sorudan once $x,y$ uzerinde herhangi bir kosul olmayan versiyonu sorulmustur, ona "hayir, degildir" cevabi verildikten sonra bu ikinci soru sorulmustur.
Evet öyle olabilir. Teşekkürler Özgür hocam.
20,274 soru
21,803 cevap
73,475 yorum
2,427,693 kullanıcı