$\mathbb{R}$ gerçel sayılar kümesi olmak üzere $$\mathcal{P}=\{A:|A^c|\geq\aleph_0\}$$ ailesi, $\mathbb{R}$ kümesi üzerinde bir primal mıdır? Yanıtınızı kanıtlayınız.
Tanım: $X$ herhangi bir küme ve $\mathcal{P}\subseteq 2^X$ olsun.
$\mathcal{P}, \ X\text{'de primal}:\Leftrightarrow \left\{\begin{array}{l} \mathbf{P_1)} \ X\notin \mathcal{P} \\ \mathbf{P_2)} \ (A\in\mathcal{P})(B\subseteq A) \Rightarrow B\in\mathcal{P} \\ \mathbf{P_3)} \ A\cap B\in\mathcal{P} \Rightarrow (A\in\mathcal{P} \vee B\in\mathcal{P}) \end{array}\right.$
Teorem: $X$ herhangi bir küme ve $\mathcal{P}\subseteq 2^X$ olsun.
$\mathcal{P}, \ X\text{'de primal}:\Leftrightarrow \left\{\begin{array}{l} \mathbf{P_1)} \ X\notin \mathcal{P} \\ \mathbf{P_2)} \ (B\notin\mathcal{P})(B\subseteq A) \Rightarrow A\notin\mathcal{P} \\ \mathbf{P_3)} \ (A\notin\mathcal{P})(B\notin\mathcal{P})\Rightarrow A\cap B\notin\mathcal{P} \end{array}\right.$