$$d_1:(\mathbb{R}\backslash \{0\})^2\rightarrow \mathbb{R}, \,\ d_1(x,y)=\mid x-y \mid$$
ve
$$d_2:(\mathbb{R}\backslash \{0\})^2\rightarrow \mathbb{R}, \,\ d_2(x,y)=\mid \frac1x-\frac1y\mid $$
olmak üzere
$$d:(\mathbb{R}\backslash \{0\})^2\rightarrow \mathbb{R}, \,\ d(x,y)=d_1(x,y)+d_2(x,y)$$
ise $$B_d(1,2)=\{x\mid d(x,1)<2, \,\ x\in \mathbb{R}\backslash \{0\} \}=?$$