$b \in (H \cap K)^g$ olsun. O halde bir $a \in H \cap K$ icin, $b = g a g^{-1}$ olarak yazabiliriz. Ama, $a \in H$ ve $a \in K$. Demek ki, $b \in H^g$ ve $b \in K^g$. Yani, $b \in H^g \cap K^g$. Yani, $$(H \cap K)^g \subseteq H^g \cap K^g$$
Ote yandan, bir $b \in H^g \cap K^g$ alalim. Demek ki, bir $a \in H$ icin $b = g a g^{-1}$ ve bir $c \in K$ icin $b = gcg^{-1}$. O halde, $gag^{-1} = gcg^{-1}$. Bu da, $a = c$ demek. Demek ki, $a \in H \cap K$. O halde, $b \in (H \cap K)^g$. Yani, $$H^g \cap K^g \subseteq (H \cap K)^g$$
O halde esitlik var demektir. Yani, ifade dogrudur.
Ama,
Burada gozlemleyebilecegimiz baska bir sey daha var. Her $g \in G$ icin, $a \mapsto gag^{-1}$ fonksiyonu kolayca gosterilebilecegi uzere
-
Bir grup homomorfizmasidir.
-
Birebirdir.
-
Ortendir.
Senin sorunun cevabi icin ise bu fonksiyonun birebir ve orten olmasi yeterlidir. Zira, $f : X \to Y$ iki kume arasinda birebir ve orten bir fonksiyon (esleme) ise her $A \subset X$ ve $B \subset Y$ icin $f(A \cap B) = f(A) \cap f(B)$ olur.
Duzeltme: Safak Ozden'in yorumunda belirttigi gibi ortenlige gerek yok. $f(A \cap B) \subseteq f(A) \cap f(B)$ her $f$ fonksiyonu icin dogruyken, $f(A) \cap f(B) \subseteq f(A \cap B)$ olmasi icin birebirlik yeterlidir.