$G$, bir cismin çarpım grubunun sonlu bir altgrubu olsun. Bu durumda $G$ değişmelidir.
Önsav: $k=\text{max}\{\left| g \right| \mid g\in G\}$ olmak üzere, her $g\in G$ için, $|g|$, $k$ sayısını böler.
İspat: $G$ içinden $|h|=k$ olacak şekilde bir $h$ elemanı alalım. Rastgele bir $g\in G$ için, diyelim ki, $|g|$'yi bölen ama $k$'yı bölmeyen bir $p$ asalı var olsun. Kolayca gösterilebilir ki bu durumda $G$ içinde mertebesi $p$ olan bir $h^{'}$ elemanı vardır. $(p,k)=1$ olduğundan, \begin{equation} |h^{'}h|=pk>k \end{equation} eşitsizliği sağlanır ki bu bir çelişkidir. Demek ki $|g|$'yi bölen her $p$ asalı $k$'yı da bölmek zorunda. Şimdi de varsayalım ki bir $q$ asalı, $|g|$ içinde $m$ kere, $k$ içinde ise $n$ kere var olsun ve $m>n$ olsun, yani bu $q$ asalı, $|g|$ içinde $k$'nın içinde olduğundan daha fazla olsun. Yine kolayca gösterilebilir ki $G$ içinde mertebesi $q^m$ olan bir $x$ elemanı ve mertebesi $k/q^n$ olan bir $y$ elemanı vardır. $(q^m,k/q^n)=1$ olduğundan \begin{equation} |xy|=kq^{m-n}>k \end{equation} eşitsizliği sağlanır ki bu da bir çelişkidir. Demek ki $|g|$'yi bölen her asal kuvveti, $k$'yı da böler. Sonuç olarak, $|g|$, $k$'yı böler.
Önsava göre, her $g\in G$ için $g^k=1$ koşulu sağlanmalı. Demek ki $G$ grubunun her elemanı, $X^k-1$ polinomunun bir kökü. Bu polinomun en fazla $k$ tane kökü olacağından, $\left| G \right|\leq k$. Diğer yandan Lagrange Teoremi'ne göre $k\leq \left| G \right|$. Bu durumda $\left| G \right|=k$ elde edilir ki bu da $G$ içinde mertebesi $k$ olan bir eleman olduğunu gösterir. Yani $G$ döngüsel.