$B(p,p)$ ifadesinin eşitini bulmaya çalışalım.
$$B(p,p)=\frac{\Gamma(p)\Gamma(p)}{\Gamma(2p)}=\int_0^1\:u^{p-1}\:(1-u)^{p-1}\:du$$
$x=2u-1$ olacak şekilde değişken değiştirelim.
$$\frac{\Gamma(p)\Gamma(p)}{\Gamma(2p)}=\frac{1}{2^{2p-1}}\int_{-1}^1\:(1-x^2)^{p-1}\:dx$$
$$\frac{\Gamma(p)\Gamma(p)}{\Gamma(2p)}=2^{1-2p}\:2\:\int_{0}^1\:(1-x^2)^{p-1}\:dx$$
Beta fonksiyonu için aşağıdaki eşitlik yazılabilir.
$$B(a,b)=2\:\int_0^1\:\omega^{2a-1}\:(1-\omega^2)^{b-1}\:d\omega$$
Bu eşitliği kullanalım.
$$\frac{\Gamma(p)\Gamma(p)}{\Gamma(2p)}=2^{1-2p}\:B\bigg(\frac{1}{2},p\bigg)=2^{1-2p}\:\frac{\Gamma\bigg(\frac{1}{2}\bigg)\Gamma(p)}{\Gamma\bigg(\frac{1}{2}+p\bigg)}$$
$$\frac{\Gamma(p)\Gamma(p)}{\Gamma(2p)}=2^{1-2p}\:\sqrt{\pi}\:\Gamma(p)\:\Gamma^{-1}\bigg(\frac{1}{2}+p\bigg)$$
Burada $\Gamma(2p)$ ifadesinin eşitini bulalım.
$$\large\color{#A00000}{\boxed{\Gamma(2p)=\Gamma(p)\:\Gamma\bigg(\frac{1}{2}+p\bigg)2^{2p-1}\:\pi^{-\frac{1}{2}}}}$$