x,y,z gerçel sayıları, x+y+z=1 ve xyz=xy+yz+zx koşullarını sağlıyorsa, (x+yz).(y+zx).(z+xy) ifadesi 0,1,2,5 sayılarından kaçına eşit olabilir?a)0 b)1 c)2 d)3 e)4
Not=2015 Tübitak matematik olimpiyatları 31 soru.
4/27 den küçük eşit çıkıyor. (şıklardan b) Benim çözümümüm uzun ve sadece işlem olduğu için başka bir çözüm çıkmassa atabilirim
Daha kısa olduğu için bu çözümü yazıyorum aslında daha net ulaşılan çözümleri var:
$(x+yz)(y+xz)(z+yx)\le (\frac{x+y+z+xy+yz+xz}{3})^3$ ve $xyz\le(\frac{x+y+z}{3})^3=1/27$ her ikiside $G.O \le A.O$ soruda $xy+yz+xz=xyz$ verildiği için cevabın 1 den küçük bir sayı olması gerektiği görülüyor
Çok yardımcı oldunuz, sağolun.
$x+y+z=1$ ise $x+y=1-z$ olmalıdır. $xyz=xy+yz+zx$ koşulu sağlanıyorsa $xyz-xy=xy(z-1)=z(x+y)$ ifadesi de doğrudur. $x+y=1-z$ ise $xy(z-1)=z(1-z)$ olur. Sadeleşince $xy=-z$ ve oradan da $z+xy=0$ olduğu görülür. O halde $(x+yz)(y+zx)(z+xy)=0$ olmalıdır. Yani cevap B şıkkıdır.
Neden herkes eşitsizlikten yapmaya çalışmış eşitliğimde bir sorun mu var iki kez çözdüm soruyu ikisi de doğruydu.
Sorunun genel çözümünü yapabilmek için tabi ki.Sizin eşitliğiniz sadece bir sonucun olabileceğini gösteriyor ama aynı zamanda diğer 3 sonucun neden olamayacağınıda gostermeliyiz ki sonuçun 1 olduğunu soyleyebilelim.Yine de teşekkürler hocam.