Özgür'ün yorumunu biraz daha açarak ifade etmeye çalışayım.
Bir $(E,O)$ eliptik eğrisi alalım. Şuan elimizde sadece belli bir denklemi sağlayan noktalar kümesi var, bir cebirsel yapı yok.
Gösterilebilir ki her $D\in\text{Div}^0(E)$, yani $0$ dereceli her bölen (divisor) için, $$D\sim (P)-(O)$$ olacak şekilde tek bir $P\in E$ noktası vardır. Buradaki $\sim$ sembolü, sağdaki ve soldaki iki bölenin doğrusal denk (linearly equivalent) olduğunu, yani ikisinin farkının tek üreteçli (principal) olduğunu gösteriyor.
Yukarıdaki bilgiye bakarak $\sigma: \text{Div}^0(E)\to E$ şeklinde bir fonksiyon tanımlayalım. Tahmin edeceği üzere bu fonksiyon $D$ bölenini, karşılık gelen $P$ elemanına götürecek. Kolayca gösterilebilir ki bu şekilde tanımlanan $\sigma$ fonksiyonu örten (surjective). Dahası $D_1,D_2\in \text{Div}^0(E)$ için, $$\sigma(D_1)=\sigma(D_2) \Leftrightarrow D_1\sim D_2$$ ifadesi sağlanır. Bu yüzden $$\bar{\sigma}:\text{Pic}^0(E)\to E$$ şeklinde bir eşleme buluruz.
Dikkat edilirse sağ taraftaki 'şey' sadece bir kümeyken, sol tarafta bir grup var. Demek ki soldaki grup yapısını kullanarak sağdaki küme üzerinde bir grup yapısı oluşturabiliriz. Kolayca görülebilir ki, eliptik eğriler üzerindeki toplama işlemi, $\text{Pic}^0(E)$ grubundan indirgenen işlemle aynı.
Demek ki eliptik eğriler üzerindeki toplama işlemi rastgele bir işlem değil. Her zaman olduğu gibi!