Lagrange Çarpanı ile $$f(x,y,z,\lambda)=\sqrt{x^2+1}+\sqrt{y^2+4}+\sqrt{z^2+9}+\lambda(x+y+z-8)$$ fonksiyonunun farklı değişkenlere göre türevleri: $$f_x'=\dfrac{x}{\sqrt{x^2+1}}+\lambda,\quad f_y'=\dfrac{y}{\sqrt{y^2+4}}+\lambda,\quad f_z'=\dfrac{z}{\sqrt{z^2+9}}+\lambda,\quad f_\lambda'=0$$ hepsinin türevleri $\lambda$'nın türevi olan $0$ da eşitlenirse $$-\lambda=\dfrac{x}{\sqrt{x^2+1}}=\dfrac{y}{\sqrt{y^2+4}}=\dfrac{z}{\sqrt{z^2+9}}$$ bulunur buradan sağ taraftakileri ikişer ikişer eşleştirerek $$x=k,\quad y=2k, \quad z=3k$$ bulunur ve $6k=8$ den $k=\dfrac{3}{4}$ bulunur. $$x=\dfrac{3}{4},\quad y=\dfrac32,\quad z=\dfrac94$$ için bu ifade minimum değerini alır.