$L:=[(L,\oplus),\odot, (\mathbb{R},+,\cdot)]$ lineer uzay ve $A\subseteq L$ olsun.
$$A, \text{ konveks}$$$$:\Leftrightarrow$$$$(\forall x,y\in A)(\forall \alpha\in [0,1])(\alpha\odot x\oplus (1+(-\alpha))\odot y\in A))$$$$\Leftrightarrow$$$$\forall x,y\ \forall \alpha \ [(x,y\in A)(\alpha\in [0,1])\Rightarrow \alpha\odot x\oplus (1+(-\alpha))\odot y\in A)]$$
O halde
$$\forall x,y \ \forall \alpha \ [\underset{0}{\underbrace{(x,y\in \emptyset)}}\underset{p}{\underbrace{(\alpha\in [0,1])}}\Rightarrow \underset{0}{\underbrace{\alpha\odot x\oplus (1+(-\alpha))\odot y\in \emptyset)}}]\equiv 1$$ yani önerme doğru olduğundan $\emptyset$ konveks bir kümedir.