Şöyle küçük bir açıklama yapmakta fayda var. Biliyoruz ki $$\mathbb{R}\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt[n]2)\cong \mathbb{R}[X]/(X^n-2)$$ şeklinde bir $\mathbb{R}$-cebri izomorfizmamız var. Şimdi $\mathbb{Q}$-doğrusal olan $\mathbb{Q}(\sqrt[n]2)\hookrightarrow \mathbb{R}$ gömmesini, $\mathbb{R}$-doğrusal olan $$\mathbb{R}\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt[n]2)\hookrightarrow \mathbb{R}\otimes_{\mathbb{Q}}\mathbb{R}$$ gömmesine genişletelim. Açık ki bu gömme çarpmayı da koruyor. Bu demek ki $ \mathbb{R}\otimes_{\mathbb{Q}}\mathbb{R}$ halkası, $\mathbb{R}[X]/(X^n-2)$ halkasına izomorfik olan bir halka içermeli.
Eğer $n$ tekse, $X^n-2$ polinomu $\mathbb{R}[X]$ içinde $1$ tane doğrusal faktöre, $(n-1)/2$ tane de ikinci dereceden indirgenemez faktöre sahip. Bu durumda, $\mathbb{R}$-cebri olarak, $$\mathbb{R}[X]/(X^n-2)\cong \mathbb{R}\times \mathbb{C}^{(n-1)/2}$$ şeklinde bir izomorfizmamız var. O halde, $\mathbb{R}[X]/(X^n-2)$ halkası $2^{1+(n-1)/2}=2^{(n+1)/2}$ tane $1$'in karekökünü içermeli.
Demek ki $n\to\infty$ iken $\mathbb{R}\otimes_{\mathbb{Q}}\mathbb{R}$ içinde $1$'in sonsuz tane karekökü var.