Tamamen haklısın, konunun yabancısı olarak makalede açıkça yazılmamış bir özelliği(*) atlayıp aşırı saçmalamışım.
$\mathbb{Z}_2$'nin etkisi hem direkt toplamı yapılan alt vektör uzaylarının damgasını belirlemesi hem de (*) (yani $\bar{0},\bar{1}$ yazmamızın toplam açısından bir anlamı var), ha bi de tek çift diye adlandırmamız yeterince açık olsun diye de.
Biçimsel olarak $M$ herhangi bir şekilde; $M_{\bar{0}}\oplus M_{\bar{1}}$ olarak ayrıştırılabiliyorsa ve $\forall i,j\in \mathbb{Z}_2: M_iM_j\subset M_{i+j}$(*)!! ( $M$ $\mathbb{Z}_2$-aşamalı demenin anlamı) ise bir üstuzay (ama $MM\nsubseteq 0$ yani sıfır vektör uzayı ayrışımdaki altkümelerden biri olamaz).
-------------------------------------------------------------------------------
Bambaşka bir cevap arayışı: Üstuzayın tanımı çoğunlukla yukarıda olduğu gibi bir $\mathbb{Z}_2$ aşamalı kümesi ama, aynı kapıya çıkan şöyle daha genel bir tanımı daha varmış:
Tanım (üstuzay, daha genel): Eğer her $\Lambda$ dış cebiri ile bir $\mathcal{M}_{\Lambda}$ kümesi (=:üstuzay $\mathcal{M}$'nin $\Lambda$ noktaları kümesi) ilişkilendirilirse ve her -$\Lambda$ dış cebirinden $\Lambda '$ dış cebirine- eşlik koruyan benzeryapı dönüşümü $\rho$ ile ilişkilendirilen hem de (**) şartını sağlayan bir $\tilde{\rho}:\mathcal{M}_\Lambda\rightarrow \mathcal{M}_\Lambda'$ göndermesi varsa, $\mathcal{M}$ bir üstuzaydır:
(**) Benzeryapı dönüşümlerinin çarpımı $\rho_1\rho_2$; $\tilde{\rho}_1\tilde{\rho_2}$ göndermelerinin değerine denktir.
Not: Bu tanım çok genel olduğundan $\mathcal{M}_\Lambda$'lerin belli ek özellikleri olmasını istemek (bir grup oluşturmaları gibi) ve $\tilde{\rho}$'lara bazı kısıtlayıcı şartlar (benzeryapı dönüşümü olmaları gibi) getirmek gerekiyor.
Genel tanım için örnek=sorudaki tanımın ardında yatan düşünce: Şimdi $M$ bir $\mathbb{Z}_2$ aşamalı vektör uzayı olsun, yani $M=M_{\bar{0}}\oplus M_{\bar{1}}$, burada $M_{\bar{0}}$ çift, $M_{\bar{1}}$ tek alt uzay diye adlandırılır. O zaman $\Lambda$ noktaları kümesi $\mathcal{M}_\Lambda$'yi; $f_i\in M_{\bar{0}}$, $g_j\in M_{\bar{1}}$ ve de $\Lambda$ cebirinin $a_i$ çift, $b_j$ tek elemanları için biçimsel doğrusal bileşimler $\sum a_i f_i+\sum b_j g_j$ olarak tanımlayalım. ($a'+a'')m=a'm+a''m, a(m'+m'')=am'+am'', a,a',a''\in\Lambda, m,m',m''\in M$ olduğunu varsayıyoruz).
$\tilde{\rho}$ göndermesi $\sum a_i f_i+\sum b_j g_j$ noktasını $\sum \rho(a_i) f_i+\sum \rho(b_j) g_j$'ya gönderir. Böylece $\mathcal{M}_\Lambda$ kümeleri ve $\tilde{\rho}$ göndermeleri $\mathcal{M}$ üstuzayını tanımlar, ki bu da $\mathbb{Z}_2$ aşamalı vektör uzayı $M$'ye tekabül eder.(Yani ortada görünmeyen Grassmann cebiri, $\rho$ ve $\tilde{\rho}$ üstuzayı belirliyor).