(Aşağıdaki çözüm fikir olarak Sercan'ın cevabı ile aslında aynı)
Sonlu 0-1 dizileri kümesinin de sayılabilir olduğu kolayca kanıtlanabilir. Bu kümeyi $2^{< \omega}$ ile gösterelim ve $g: 2^{< \omega} \rightarrow \mathbb{N}$ bir eşleme olsun.
$f: 2^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$ fonksiyonu $(a_i)_{i \in \mathbb{N}} \mapsto \{g((a_0,a_1,...,a_i)):i \in \mathbb{N}\}$ olarak tanımlansın. $f$ fonksiyonunun birebir olduğunu ve görüntüsünün istenilen özellikleri sağladığını kanıtlamak da okuyucuya egzersiz olsun!