Tanım: $(X_i,\tau_i)_{i\in I}$ topolojik uzaylar ve $\mathcal{A}_i:=\left\{\pi_i^{-1}[U_{i_{j_i}}]\Big{|}U_{i_{j_i}}\in\tau_i\right\}$ olmak üzere $$\mathcal{A}:=\bigcup\mathcal{A}_i$$ ailesinin doğurduğu topolojiye (boştan farklı) $$X=\prod_{i\in I} X_i$$
kümesi üzerindeki çarpım topolojisi denir.
Tanım: $(X_i,\tau_i)_{i\in I}$ topolojik uzaylar olmak üzere
$$\mathcal{B}:=\left\{\prod_{i\in I}U_{i_{j_i}}\Big{|}U_{i_{j_i}}\in\tau_i\right\}$$ ailesi,
$$X=\prod_{i\in I} X_i$$ kümesi üzerindeki bir topoloji için bazdır.(Neden?) Bu $$\mathcal{B}$$ ailesinin doğurduğu topolojiye $$X=\prod_{i\in I} X_i$$ kümesi üzerindeki kutu (box) topoloji denir.
Son olarak $$|I|<\aleph_0$$ ise $X$ kümesi üzerindeki çarpım topolojisi ile kutu topolojisi çakışır. Genel olarak kutu topolojisinin açıklarının çarpım topolojisinin açıklarından daha çok yani kutu topolojisinin çarpım topolojisinden daha ince olduğunu görmek zor olmasa gerek.