Fonksiyonun türevinin sınırlı olduğu durumlarda düzgün süreklilik kolaylıkla gösterilebilir.
Yukarıda verilen $f$ fonksiyonu için $$f'(x)=3x^2sin(\frac{1}{x^2})-2cos(\frac{1}{x^2})$$ ve $x\in(0,1]$ için $$-5\leq f'(x)\leq 5 $$ olduğundan ortalama değer teoremi yardımıyla $$c\in(x,y) \ ve \ x,y\in(0,1]$$ için $$ |f(x)-f(y)| \leq |f'(c)| |x-y| \leq 5|x-y| \leq 5\delta<\epsilon $$ yazılabilir. Dolayısıyla her $\epsilon >0 $ için $\delta <\frac{\epsilon}{5}$ alınırsa $$|x-y|<\delta \Rightarrow |f(x)-f(y)| \leq \epsilon$$ yazılabildiğinden fonksiyon düzgün süreklidir.