Bu şekilde polinomların var olup olmadığı, $P(Q(x))$ polinomunun köklerinin değerlerine bağlıdır. Köklerden bağımsız olarak karar verilemez. Güzel bir soru olmuş.
Bu sorudaki kökler 1,2,...,15 olup (hesabını yapmadım ama uzunca bir hesapla, ( basit bir bilgisayar programı ile daha kolayca veya güzel kısa bir mantık ile ) sanıyorum böyle iki polinomun var olmadığı görülür. Ben, (kök olarak) başka sayılar kullanıldığında böyle polinomların var olduğu gösteren bir örnek vereyim:
$a_1,a_2,\ldots,a_{15}$ sayıları (farklı olmayabilirler) ,
$$a_1+a_2+a_3=a_4+a_5+a_{6}=\cdots=a_{13}+a_{14}+a_{15}$$ ve
$$a_1a_2+a_1a_3+a_2a_3=\cdots=a_{13}a_{14}+a_{13}a_{15}+a_{14}a_{15}$$
olacak şekilde (15 bilinmeyen daha az denklem olduğu için bulunabilir) seçilirse ve $b=a_1+a_2+a_3$, $c=a_1a_2+a_1a_3+a_2a_3$ alınıp,
$$Q(x)=x^3-bx^2+cx,\quad P(x)=(x-a_1a_2a_3)(x-a_4a_5a_6)\cdots(x-a_{13}a_{14}a_{15})$$
alındığında $P(Q(x))=(x-a_1)(x-a_2)\cdots(x-a_{15})$ olduğu, $a_1,a_2,\ldots,a_{15}$ sayılarının herbirinin $P(Q(x))$ in kökü oluşundan görülür.
Başka (farklı dereceli) bir örnek de $Q(x)=x^2-7x,\ P(x)=(x+6)(x+10)(x+12)$ için (köklerine bakarak) $P(Q(x))=(x-1)(x-2)\cdots(x-6)$ olduğu görülür. Bunun ilgili genel bir kriter bulduğumu sanıyorum. Bulduklarımı yazmayı bitirince paylaşırım.