Genel terimi $$x_n=\ln n$$ olan $$\langle x_n\rangle$$ gerçel sayı dizisi için $$\lim_{n\to\infty}d(x_{n+1},x_n)=\lim_{n\to\infty}|\ln(n+1)-\ln n|=\lim_{n\to\infty}\left|\ln\left(\frac{n+1}{n}\right)\right|$$$$=$$$$\lim_{n\to\infty}\left[\ln\left(\frac{n+1}{n}\right)\right]\overset{?}{=}\ln\left[\lim_{n\to\infty}\left(\frac{n+1}{n}\right)\right]=\ln 1=0$$ olmasına karşın $$\langle x_n\rangle$$ dizisi -sınırlı olmadığından- Cauchy dizisi değildir.
Not: "?" işaretinin olduğu geçişin gerekçesi de önemli.