Yorumda belirtilen cevaba ek olarak :
Riemann ve Riemann-Stieltjes integrali tanımında fonksiyonun tanım kümesindeki aralıklar kullanılır ve alt ve üst toplamlar birbirine yaklaştırılmaya çalışılır. Lebesgue integralinde ise aralık değil çok daha genel (ölçülebilir) kümeler kullanılır ve (poziti fonksiyonlarda) sadece "alt toplamların" üst sınırı hesaplandığı için üst toplamlar ile kıyaslanmıyor olması avantajı var.
Sürekli fonksiyonlar aralıklarda iyi davranır ama süreksizler için aynı şey geçerli değil. Bu nedenle Lebesgue integrali süreksiz fonksiyonlara daha "başarılı" bence.
Fakat bazan da bunun tersi oluyor Örneğin $$\int_1^\infty \frac{\sin x}x\,dx$$ özge (has olmayan, improper) integrali Riemann integraline göre yakınsak Lebesgue integraline göre ıraksak oluyor.