a) t çift ve $k_1,k_2,k_3,...,k_t$ tek sayılar olsun .Eğer $k_1=k_2=...=k_t$ o zaman $1=\frac1{k_1}+\frac1{k_2}+...+\frac1{k_t} = \frac{t}{k_1} =\frac1{k_1}$, ve $ t=1$ olmak zorundadır. Yani en iki $k$ değeri bir birinden farklıdır.
Şimdi $t$ çift bir doğal sayı ve $k_1,k_2,k_3,...,k_t$ sayılarıda birbirinden farklı tek sayılar iken varsayalım ki
$1 = \frac1{k_1}+\frac1{k_2}+...+\frac1{k_t}$ eşitliği doğru olsun. Bu eşitliğin sağında payda eşitlemesi yapıldığında, her bir kesrin payı; tek sayıda tek sayının çarpımı yani tek sayı olacaktır. Ortak payda ise tek sayıların çarpımı, yani tek sayı olacaktır. Çift sayıda kesir olduğundan, pay çift bir sayı olur. Pay paydaya tam olarak bölünmez. Bu sebeple sonuç bir olamaz.