Elimizde $y,z$ olarak iki adet fonksiyon olsun. Bu ikisi arasinda da $y=zf(y)$ bagintisi olsun, $f$ fonksiyonumuz $y$ cisinden bir kuvvet serisi (power series). O halde tum $g(y)$ fonksiyonlarini $z$'nin bir kuvvet serisi olarak yazabiliriz ve o seri:
$g(y)=\sum_{k=1}^{\infty} \frac{1}{k!}\bigg( \big(f(y)^kg^{'}(y)\big)^{(k-1)}\bigg|_{y=0}\bigg)z^k$
serisidir. (Burda $^{(k-1)}$, $k-1$inci turevi.)
Ek:Burda ki tum'den kasit: surekli turevlenebilen tum.