(1) lineerlik : $d(\alpha+\beta)=d\alpha+d\beta$
(2) nilpotentlik : $d^2=0$
(3) $0$-formlarında (örneğin; fonksiyonlar), $df=\frac{∂f}{∂x^i}dx^i$
(4) $f$ bir fonksiyon ve ω bir form olmak üzere $d(fω)=(df) ∧ ω+fdω$ özellikleriyle,
dış türev, $d : Λ^p → Λ^{p+1}$ operatörüdür.
a) $ω = (p!)^{-1}ω_{{i_1}...i_p}dx^{i_1}∧ · · · ∧dx^{i_p}$ ise $dω = (p!)^{−1}(∂ω_{{i_1}...i_p}/∂x^j)dx^j∧dx^{i_1}∧ · · · ∧dx^{i_p}$ ,
b) $α ∈ Λ^p , β ∈ Λ^q$ ise $d(α ∧ β) = (dα) ∧ β + (−1)^pα ∧ dβ$
gösteriniz.