Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
426 kez görüntülendi

x,y  birbirinden farklı reel sayılar olmak üzere,

x^2+y=30

y^2+x=30

x^2+y^2=?

Orta Öğretim Matematik kategorisinde (93 puan) tarafından 
tarafından yeniden kategorilendirildi | 426 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
iki denklemin farkini alirsak $(x-y)(x+y-1)=0$.

Eger $x+y=1$ olursa ilk denklemden $x^2+1=30+x$ olur. Bunun reel kokleri incelenmeli. 

Ayrica $x=y$  durumda da $(x-5)(x+6)=0$ olur ve iki tane cevap gelir.
(25.5k puan) tarafından 
ben eklemeyi unutmuşum soruya sayılar birbirinden farklı diyor. birde ikiside otuza eşit oldugu için x+y=1 buldum bende ama devamını getiremedim.

$a^2-a-29=0$ denkleminin bir kökü $x$ ve diğer kökü $y$. Kökler toplamı ve çarpımı bilindiğinden kareleri toplamını da biliriz.

Ayrıca sorunu doğru şekilde düzenlemelisin ki, ilgili olacak olanlar doğru soru ile karşılaşsın.

X^2=29+X
Y^2=29+y
Bu iki ifadeyi toplarsak x^2 + y^2 = 58 + X + Y den 59 çıkıyor. Yardımın için teşekkür ederim. 

Evet, bu daha basitmis.

20,274 soru
21,803 cevap
73,476 yorum
2,428,507 kullanıcı