Dikkat: Cozum hakkinda suphelerim var.
$f(x)=\dfrac{\sin(x)}{x}$ azalan bir fonksiyon olmakla birlikte bir $k\in \mathbb{N^+ }$ icin $f(x)\geq0 \in [k,\infty)$ olmuyor. Bu da integral testinin taniminda gecen kosullari ihlal ediyor.
Bununla birlikte sonlu toplamlar icin esitsizlik saglaniyor. Yani
$\displaystyle\lim_{N\to\infty }\left(\sum_{n=1}^{N}\dfrac{\sin(n)}{n}\right)=\displaystyle\lim_{N\to\infty }\left(\displaystyle\sum_{n=0}^N\dfrac{\sin(n)}{n}-1\right)<\displaystyle\lim_{N\to\infty }\left(\displaystyle\int_0^{N}\dfrac{\sin(x)}{x}dx\right),$ $\forall \;N\in\mathbb{N^+}$ dir.
-----------------------------------------------------------------------------------------------------------------------
Cozum:
Oncelikle serimizi $n=0$'dan baslatabilirmiyiz onu gosterelim.
$\displaystyle\lim_{x\to0}\dfrac{\sin(x)}{x}=\dfrac00\underset{L'H}\implies\displaystyle\lim_{x\to0}\dfrac{\cos(x)}{1}=1\implies\displaystyle\lim_{n\to0}\dfrac{\sin(n)}{n}=1$
$\displaystyle\sum_{n=1}^{\infty}\dfrac{\sin(n)}{n}=\displaystyle\sum_{n=0}^{\infty}\dfrac{\sin(n)}{n}-1$
$\displaystyle\int_0^{\infty}\dfrac{\sin(x)}{x}dx=\dfrac{\pi}{2} \quad \text{yakinsak oldugundan }\implies\displaystyle\sum_{n=0}^{\infty}\dfrac{\sin(n)}{n}$ integral testine gore yakinsaktir $\implies\displaystyle\sum_{n=1}^{\infty}\dfrac{\sin(n)}{n}$ yakinsaktir.
Not:
$\displaystyle\sum_{n=1}^{\infty}\dfrac{\sin(n)}{n}=\displaystyle\sum_{n=0}^{\infty}\dfrac{\sin(n)}{n}-1<\displaystyle\int_0^{\infty}\dfrac{\sin(x)}{x}dx=\dfrac{\pi}{2}\implies\displaystyle\sum_{n=1}^{\infty}\dfrac{\sin(n)}{n}<1+\dfrac{\pi}{2}$ usten sinirli oldugunu soyleyebiliriz.
-----------------------------------------------------------------------------------------------------------------------
$\displaystyle\int_0^{\infty}\dfrac{\sin(x)}{x}dx=\dfrac{\pi}{2}$ Internette bir cok gosterimi var. Ben asagidakini sevdim ve umarsizca asirdim. Laplace donusumlerinden faydalanilmistir.
$$I(s)=\displaystyle\int_0^\infty e^{-sx}\frac{\sin x}{x}dx=\displaystyle\lim_{b\to\infty}\int_0^be^{-sx}\frac{\sin x}{x}dx, s\ge 0.$$ $s$'ye gore turev alirsak
$$I'(s)=-\displaystyle\lim_{b\to\infty}\int_0^b e^{-sx}\sin xdx\underset{\text{*}}=\displaystyle\lim_{b\to\infty}\frac{e^{-sx}}{s^2+1}(s\sin x+\cos x)\Big|_0^b=-\frac{1}{s^2+1}.$$
*iki defa parcali integrasyon
$$I'(s)=-\frac{1}{s^2+1}.$$ integral alirsak
$$I(\infty)-I(0)=-\int_0^\infty\frac{1}{s^2+1}ds=-\frac{\pi}{2}.$$
$I(\infty)=0$ gosterimi okuyucuya birakilmistir.
$$-I(0)=-\frac{\pi}{2}\implies I(0)=\displaystyle\int_0^{\infty}\dfrac{\sin(x)}{x}dx=\dfrac{\pi}{2}$$
Kaynakca: https://math.stackexchange.com/questions/5248/evaluating-the-integral-int-0-infty-frac-sin-x-x-mathrm-dx-frac-pi