$f(x)=4\cos(x)-e^x$, $p_0=\frac{\pi}{4}$, $p_1=\frac{\pi}{2}$
$p_{k+1}=p_{k}-f(p_{k})\frac{p_{k}-p_{k-1}}{f(p_{k})-f(p_{k-1})}$, $k=1,2,3,...,n$
$k=1$ icin
$p_{2}=p_{1}-f(p_{1})\frac{p_{1}-p_{0}}{f(p_{1})-f(p_{0})}=\frac{\pi}{2}-f(\frac{\pi}{2})\frac{\frac{\pi}{2}-\frac{\pi}{4}}{f(\frac{\pi}{2})-f(\frac{\pi}{4})}=0.870026$
$k=2$ icin
$p_{3}=p_{2}-f(p_{2})\frac{p_{2}-p_{1}}{f(p_{2})-f(p_{1})}=0.870026-f(0.870026)\frac{0.870026-\frac{\pi}{2}}{f(0.870026)-f(\frac{\pi}{2})}=0.898545$
$.$
$.$
Boyle devam et. Elle yapmak sacmalik. Excel de kullanilabilir..