Belki de şöyle anlatmalıyım:
Elimizde bir kümeler (objeler) evreni olduğunu varsayıyoruz. Kümenin bir tanımı yok, tanımsız bir terim. Küme dediğiniz şey bir yerlerde var olduğuna inandığımız objeler evrenindeki bir nesne. Bu kümelerin arasında bir elemanı olmak ilişkisi olduğunu varsayıyoruz. Buna ek olarak da kümelerin aralarındaki elemanı olmak ilişkisi ile ZFC aksiyomlarını sağladığını varsayıyoruz.
Bu aksiyomlar altında $\exists x \forall y\ y \in x$ cümlesinin yanlış olduğunu kanıtlayabiliyoruz. Yani kümeler evrenimizde öyle bir küme yoktur ki tüm kümeleri içersin.
Sınıf dediğiniz şey bir formül ile tanımlanabilen küme koleksiyonlarıdır. Sınıflar küme olmak (yani evrenimizin bir elemanı olmak) zorunda değil. Mesela $x=x$ formülü bir sınıf tanımlar. Tanımladığı sınıf $\{x: x=x\}$ tüm kümeler sınıfıdır. Bu sınıfın küme olmadığını kanıtlayabiliyoruz. Demek ki bu sınıf (topluluk) kümeler evrenimizin bir elemanı değil.