$x, y, z \in C$ olsun. Gostermek istedigimiz $d(x, y) \leq d(x,z) + d(y,z)$ oldugu.
Oncelikle, $i \neq j$ farkli olmak uzere, $i$inci basamaktaki sayi ile $j$inci basamaktaki sayinin arasinda bir iliski olmadigini, bunlarin birbirinden bagimsiz oldugunu gozlemleyelim.
Simdi, iki durumumuz var. Eger $x_i = y_i$ ise bunun mesafeye bir etkisi olmuyor. Ama eger $x_i \neq y_i$ ise mesafe $1$ artiyor.
Birinci durum: Eger $x_i = y_i$ ise iki alt durum var:
- $x_i = y_i = z_i$: Bu durumda $i$ koordinatinin katkisi $d(x,y), d(x,z), d(y,z)$ mesafelerinin hepsi icin sifir.
- $x_i = y_i \neq z_i$: Bu durumda da $i$ koordinatinin katkisi $d(x,y)$ mesafesi icin sifir iken, $d(x,z)$ ve $d(y,z)$ mesafeleri icin bir.
Iki durumda da $i$ koordinatinin etkisi azalmiyor.
Ikinci durum: Eger $x_i \neq y_i$ ise uc alt durum var:
- $x_i \neq y_i = z_i$: Bu durumda $i$ koordinatinin katkisi $d(x,y)$ mesafesi icin bir, $d(x, z)$ mesafesi icin bir, $d(y,z)$ mesafesi icin ise sifir.
-
$z_i = x_i \neq y_i$: Bu durumda $i$ koordinatinin katkisi $d(x,y)$ mesafesi icin bir, $d(x,z)$ mesafesi icin sifir, $d(y,z)$ mesafesi icin bir.
-
$x_i \neq z_i$ ve $y_i \neq z_i$: Bu son durumda ise $i$ koordinatinin katkisi $d(x,y), d(x,z), d(y,z)$ mesafelerinin hepsi icin bir.
Goruldugu gibi uc durumda da $i$ koordinatinin etkisi azalmiyor.
Teker teker her koordinat icin, bu koordinatlarin katkilari azalmiyorsa; koordinatlarin katkisi bagimsiz oldugundan, bu katkilari topladigimizda toplam katki da azalmaz. Bu da ucgen esitligini kanitlamis olur.
Ayrica, bu mesafenin simetrik oldugu - yani $d(x, y) = d(y,x)$ oldugu - bariz. Her $x,y \in C$ icin $d(x, y) \geq 0$ ve $d(x,x) = 0$ oldugu da ayni sekilde bariz.