$$\begin{align}f(x)&=\int(x+2x^2+3x^3+4x^4+...)dx\\&=\int\left(\sum_{n=1}^{\infty}nx^n\right)dx\\&=\sum_{n=1}^{\infty}\left(\int nx^ndx\right)\\&=\sum_{n=1}^{\infty}\frac{nx^{n+1}}{n+1}\end{align}$$
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{(n+1)x^{n+2}}{n+2}\frac{n+1}{nx^{n+1}}\right|=|x|<1\implies-1<x<1$$
$x=-1:\qquad\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^nn}{n+1}$ iraksak
$x=1:\qquad\displaystyle\sum_{n=1}^{\infty}\frac{n}{n+1}$ iraksak
Fonksiyonun tanim araligi $x\in (-1,1)$ olur.