Biraz uzun olmakla birlikte baska bir yoldan cozelim.
$$\sum_{n=1}^\infty\frac{n}{4^{n+1}}=\sum_{n=1}^\infty\frac{n}{4^{n+1}}+\sum_{n=1}^\infty\frac{1}{4^{n+1}}-\sum_{n=1}^\infty\frac{1}{4^{n+1}}=\sum_{n=1}^\infty\frac{n+1}{4^{n+1}}-\sum_{n=1}^\infty\frac{1}{4^{n+1}}$$
$$\sum_{n=1}^\infty\frac{n+1}{4^{n+1}}=4\sum_{n=1}^\infty\frac{n+1}{4^{n+2}}=4\sum_{n=2}^\infty\frac{n}{4^{n+1}}=4\left[\sum_{n=1}^\infty\frac{n}{4^{n+1}}-\frac{1}{16}\right ]$$ $\Rightarrow$
$$\sum_{n=1}^\infty\frac{n}{4^{n+1}}=4\left[\sum_{n=1}^\infty\frac{n}{4^{n+1}}-\frac{1}{16}\right ]-\sum_{n=1}^\infty\frac{1}{4^{n+1}}$$ $\Rightarrow$
$$3 \sum_{n=1}^\infty\frac{n+1}{4^{n+1}}=\frac{1}{4}+\sum_{n=1}^\infty\frac{1}{4^{n+1}}$$ $\Rightarrow$
$$\sum_{n=1}^\infty\frac{n}{4^{n+1}}=\frac{1}{3}\left[\frac{1}{4}+\frac{1}{4}\sum_{n=1}^\infty\left(\frac{1}{4}\right)^n\right]=\frac{1}{3}\left[\frac{1}{4}+\frac{1}{4}\frac{\frac{1}{4}}{1-\frac{1}{4}}\right]=\frac{1}{9}$$